

LOSS REDUCTION WITH OPTIMIZATION OF CAPACITOR PLACEMENT USING BFA ALGORITHM - CASE STUDY FOR A 20 KV NETWORK IN IRAN

MOEIN KHOSRAVI¹, MILAD ASKARI HASHEMABADI², VAJIHE SHARIFI DAVARANI³, MOHADESEH SHARIFI DAVARANI⁴ & MAHDI MOZAFFARI LEGHA⁵

¹Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Sirjan, Iran
²Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Kerman, Iran
³Department of Mathematics, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran
⁴Department of Mathematics, Education Management, Rafsanjan, Iran
⁵Department of Electrical & Electronic Engineering, Payame Noor University, Kerman, Iran

ABSTRACT

Increasing application of capacitor banks on distribution networks is the direct impact of development of technology and the energy disasters that the world is encountering. To obtain these goals the resources capacity and the installation place are of a crucial importance. Line loss reduction is one of the major benefits of capacitor, amongst many others, when incorporated in the power distribution system, the quantum of the line loss reduction should be exactly known to assess the effectiveness of the distributed generation. In this paper, a new method is proposed to find the optimal and simultaneous place and capacity of these resources to reduce losses, improve voltage profile too the total loss of a practical distribution system is calculated with and without capacitor placement and an index, quantifying the total line loss reduction is proposed. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on actual power network of Kerman Province, Iran and the simulation results are presented and discussed.

KEYWORDS: Distribution Systems, Loss Reduction Index, Capacitor Placement, Bacteria Foraging Algorithm (BFA)

INTRODUCTION

The loss minimization in distribution systems has assumed greater significance recently since the trend towards distribution automation will require the most efficient operating scenario for economic viability variations. The power losses in distribution systems correspond to about 70% of total losses in electric power systems (2005). To reduce these losses, shunt capacitor banks are installed on distribution primary feeders. The advantages with the addition of shunt capacitors banks are to improve the power factor, feeder voltage profile, Power loss reduction and increases available capacity of feeders.

Therefore it is important to find optimal location and sizes of capacitors in the system to achieve the above mentioned objectives. Since, the optimal capacitor placement is a complicated combinatorial optimization problem, many different optimization techniques and algorithms have been proposed in the past. H. Ng et al (2000) proposed the capacitor placement problem by using fuzzy approximate reasoning. Ji Pyng Chiou et al (2006) proposed the variable scale hybrid differential evolution algorithm for the capacitor placement in distribution system. Both Grainger et al (1981) and Baghzouz and Ertem (1990) proposed the concept that the size of capacitor banks was considered as a continuous variable.

However, considered only the losses in the lines and the quantification were defined for the line losses only. These indices, therefore, do not indicate the loss reduction of the system itself. A practical distribution system consists of several distribution transformers, supplying consumers at low voltage on the secondary side. The losses occurring in these transformers and the line losses of the secondary low voltage distribution system should also be considered to arrive at the overall loss reduction of the system.

In this paper, a new method is proposed to find the optimal and simultaneous place and capacity of these resources to reduce losses, improve voltage profile too the total loss of a practical distribution system is calculated with and without capacitor placement and an index, quantifying the total line loss reduction is proposed. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on actual power network of Kerman Province, Iran and the simulation results are presented and discussed.

OBJECTIVE FUNCTION

The objective of capacitor placement in the distribution system is to minimize the annual cost of the system, subjected to certain operating constraints and load pattern. For simplicity, the operation and maintenance cost of the capacitor placed in the distribution system is not taken into consideration. The three-phase system is considered as balanced and loads are assumed as time invariant. Mathematically, the objective function of the problem is described as:

Minimize f = Min (COST)

Where COST includes the cost of power loss and the capacitor placement. The voltage magnitude at each bus must be maintained within its limits and is expressed as:

 $V_{min} \leq |V_i| \leq V_{max}$

Where |Vi| is the voltage magnitude of bus i, V_{min} and V_{max} are bus minimum and maximum voltage limits, respectively.

FORMULATION

The power flows are computed by the following set of simplified recursive equations derived from the single-line diagram depicted in Figure 1.

Figure 1: Single Line Diagram of Main Feeder

$$P_{i+1} = P_i - P_{Li+1} - R_{ij+1} \frac{P_i^2 + Q_i^2}{|V_i|^2}$$
$$Q_{i+1} = Q_i - Q_{Li+1} - X_{ij+1} \frac{P_i^2 + Q_i^2}{|V_i|^2}$$

$$|V_i|^2 = |V_i|^2 - 2(R_{ij+1}P_i + X_{ij+}Q_i) + (R_{ij+1}^2 + X_{ij+1}^2) \times \frac{P_i^2 + Q_i^2}{|V_i|^2}$$

Where Pi and Qi are the real and reactive powers flowing out of bus i, and P_{Li} and Q_{Li} are the real and reactive load powers at bus i. The resistance and reactance of the line section between buses i and i+1 are denoted by $R_{i,i+1}$ and $X_{i,i+1}$ respectively. The power loss of the line section connecting buses i and i+1 may be computed as

$$P_{Loss}(i, i + 1) = R_{i,i+1} \frac{P_i^2 + Q_i^2}{|V_i|^2}$$

The total power loss of the feeder, P_T^{LOSS} may then be determined by summing up the losses of all line sections of the feeder, which is given as

$$P_T^{LOSS} = \sum_{i=0}^{n-1} P_{LOSS}(i, i+1)$$

Considering the practical capacitors, there exists a finite number of standard sizes which are integer multiples of the smallest size Q0 c. Besides, the cost per Kvar varies from one size to another. In general, capacitors of larger size have lower unit prices. The available capacitor size is usually limited to

$$Q_c^{max} = LQ_c$$

Therefore, for each installation location, there are L capacitor sizes $\{1Q_C, 2Q_c, 3Q_c, LQc\}$ available. Given the annual installation cost for each compensated bus, the total cost due to capacitor placement and power loss change is written as

$$COST = K_p \times P_T^{LOSS} + \sum_i^c (K_{cf} + K_i^c Q_i^c)$$

Where n is number of candidate locations for capacitor placement, Kp is the equivalent annual cost per unit of power loss in K_{cf} is the fixed cost for the capacitor placement. Constant K_i^c is the annual capacitor installation cost, and, i = 1, 2, ..., n are the indices of the buses selected for compensation. The bus reactive compensation power is limited to

$$Q_i^c \leq \sum_{i=1}^n Q_{Li}$$

Where $1Q_c$ and LQ_c are the reactive power compensated at bus i and the reactive load power at bus i, respectively.

POWER FLOW ANALYSIS METHOD

The Backward-Forward Sweep method is an iterative means to solving the load flow equations of radial distribution systems which has two steps. The Backward sweep, which updates currents using Kirchoff's Current Law (KCL) and the Forward sweep, which updates voltage using voltage drop calculations [5]. The Backward Sweep calculates the current injected into each branch as a function of the end node voltages. It performs a current summation while updating voltages. Bus voltages at the end nodes are initialized for the first iteration. Starting at the end buses, each branch is traversed toward the source bus updating the voltage and calculating the current injected into each bus. These calculated currents are stored and used in the subsequent Forward Sweep calculations. The calculated source voltage is used for mismatch calculation as the termination criteria by comparing it to the specified source voltage. The Forward

Sweep calculates node voltages as a function of the currents injected into each bus. The Forward Sweep is a voltage drop calculation with the constraint that the source voltage used is the specified nominal voltage at the beginning of each forward sweep. The voltage is calculated at each bus, beginning at the source bus and traversing out to the end buses using the currents calculated in previous the Backward Sweep [5].

BACTERIAL FORAGING ALGORITHM (BFA)

Natural selection tends to eliminate animals with poor foraging strategies and favor the propagation of genes of those animals that have successful foraging strategies [15]. The Escherichia coli (E. coli) bacteria that are present in our intestines also undergo these foraging strategies. The social foraging behavior of E. coli bacteria has been used to solve optimization problems. The optimization in BFA comprises the following process: chemo taxis, swarming, reproduction, elimination and dispersal the chemo taxis is the activity that bacteria gathering to nutrient-rich area naturally. The characteristic of E. coli bacteria is: the diameter is $1\mu m$, the length is $2\mu m$, under appropriate conditions can reproduce (split) in 20 min. The move of the E. coli is done with flagellum [21,22]. An E. coli bacterium alternates between running and tumbling. At down, the E. coli bacterium is is depicted in Figure 2. The flow chart of proposed method is depicted in Figure 3

Figure 2: An E. coli Bacterium

Figure 3: Flowchart of the Proposed BFA Algorithm

Loss Reduction Analysis

The total loss of the distribution system without capacitor is given by

$$Loss_{without Cap} = \sum_{i=1}^{N-1} I_i^2 \times r \times L_i + \sum_{i=1}^{N-1} (P_{ci} + P_{Lv_i})$$

Where I_i is the current flowing through ith section, r is the resistance of line in ohms per unit length, L_i is the length of ith section, P_{ci} is the core loss of ith transformer, P_{Lv_i} is the Losses on the low voltage side of the ith transformer and N is the number of busses in the system.

In order to determine the losses of the system, the core loss of each transformer and the LV side losses on each transformer must be known. It is evident from the above equation that the total losses can be reduced only by reducing the first term which represents the feeder line losses, since the other term representing the core loss and the LV side loss of each transformer remain same independent of the presence of capacitor. If a capacitor is inserted at Kth bus, the feeder segments up to bus K will carry the difference of the initial current and the injected current by the capacitor. Where I_{Cap} is the current injected by the capacitor and I_i remains the same at earlier value. The total loss of the distribution system with capacitor is now

$$Loss_{with \ Cap} = \sum_{i=1}^{K-1} (I_i - I_{Cap})^2 r L_i + \sum_{i=k}^{N-1} I_i^2 r L_i + \sum_{i=1}^{N-1} (P_{ci} + P_{Lv_i})$$

A factor, loss reduction index (LRI), which quantifies the loss reduction with the insertion of capacitor, is defined

$$LRI = \frac{Loss in the system with capacitor}{Loss in the system without capacitor}$$

The LRI is now obtained as

$$LRI = \frac{Loss_{System \ without \ Cap} + K_{Loss}I_{Cap}}{Loss_{System \ without \ Cap}}$$

Where K_{Loss} is the loss factor given by

$$K_{loss} = \sum_{i=1}^{K-1} (I_{Cap} - 2I_i) \times r \times L_i$$

TEST RESULTS

as

To study the proposed method, actual power network of Kosar feeder of Kerman Province, Iran is simulated in Cymedist Figure 4 illustrates the single-line diagram of this network. The base values of the system are taken as 20kV and 20MVA. The system consists of 20 distribution transformers with various ratings. The details of the distribution transformers are given in table 1. The details of the distribution conductors are given in table 2. The lengths of the feeder segments are given in table 3. The total connected load on the system is 2550 KVA and the peak demand for the year is 2120 KVA at a PF of 0.8 lag. The connected loads on the transformers are listed in table 4.

Rating [KVA]	50	100	250
Number	5	9	6
No load losses [watts]	150	250	480
Impedance [%]	4.5	4.5	4.5

Table 1: Details of Transformers in the System

Table 2: Details of Conductors in the System

Туре	R [Ω/Km]	X [Ω/Km]	Cmax [A]	A [Mm2]
Hyena	0.1576	0.2277	550	126
Dog	0.2712	0.2464	440	120
Mink	0.4545	0.2664	315	70

Table 3: Distribution System Li	ne Data
---------------------------------	---------

From	То	Length	
FIOIII	10	(Meters)	
1	2	80	
2	3	80	
3	4	80	
4	5	60	
5	6	60	
6	7	60	
7	8	60	
8	9	60	
9	10	60	
10	11	60	
11	12	60	
12	13	60	
13	14	60	
14	15	60	
14	16	60	
16	17	60	
17	18	60	
18	19	60	
19	20	60	

Table 4: Details of the Connected Loads

Transformer No	Load [Kva]
1	35
2	245
3	85
4	165
5	50
6	85
7	180
8	35
9	35
10	90
11	85
12	75
13	200
14	73

	Table 4:	Contd.,	
	15	35	
	16	85	
	17	98	
	18	230	
	19	220	
	20	85	
- A		A THE	

Figure 4: Single-Line Diagram of Actual Power Network of Kosar Feeder of Kerman Province in Cymedist

Initially, a load flow was run for the case study in both fundamental frequency and harmonics frequencies without installation of capacitor. Table 5 depicts the results of power flow for determination voltage before installation of capacitor. Table 6 depicts the locations and capacity of capacitor banks using Bacteria foraging algorithm. As it is clear, all the obtained values confines with all the considered constraints.

Table 5: Results of Power Flow before and after Installation of Capacitor

Bus Number	V _{before} (Pu)	V _{after} (Pu)
1	1.0	1.0
2	0.9999	0.9999
3	0.9998	0.9999
4	0.9988	0.9999
5	0.9988	0.9999
6	0.9987	0.9988
7	0.9985	0.9988
8	0.9889	0.9888
9	0.9879	0.9881
10	0.9849	0.9885
11	0.97	0.99
12	0.93	0.97
13	0.89	0.91
14	0.9849	0.988
15	0.9849	0.988
16	0.91	0.95
17	0.92	0.96
18	0.95	0.98
19	0.94	0.95
20	0.89	0.93

Table 6: Optimal Place and Capacity of Capacitor Banks

Location [#Bus]	Capacity [Mvar]
2	0.1
6	0.025
7	0.1
13	0.25
15	0.1

The detailed pu voltages profile and Percentage of loss of all the nodes of the system before and after capacitor placement are shown in the Figure 5 and Figure 6. The simulation results are given in Table 7. These results reveal that the inclusions of capacitor reduce the line losses as expected. It can be shown from the graphs that, LRI decreases marginally, since the core losses of the transformers and the LV side losses remain constant being independent of the presence of v. It can also be seen that with the increase in the reactive power of capacitor, LRI, decrease.

Figure 5: Voltage Profile of 20 Bus System before and after Capacitor Placement

Figure 6: Percentage of Loss before and after Capacitor Placement Table 7: Variation of LRI and Capacity & Number of Capacitor Banks

Number of Capacitor	3	5	7
place	7,13,15	7,8,9,11,20	5,7,13,15,16,18,20
Picked capacity used [Mvar]	0.02	0.35	2.1
LRI [%]	0.8866	0.6649	0.7026

CONCLUSIONS

In the present paper, a new population based Bacteria foraging algorithm (BFA) has been proposed to solve capacitor placement problem and quantifying the total line loss reduction in distribution system. Simulations are carried on actual power network of Kerman Province, Iran. The simulation results show that the inclusion of capacitor, marginally reduce the losses in a distribution system. This is because; the line losses form only a minor part of the distribution system losses and the capacitor can reduce only the line losses. The other losses viz. the transformer losses and the LV side

distribution losses remain unaltered. Hence this fact should be considered before installing a capacitor into a system. The results obtained by the proposed method outperform the other methods in terms of quality of the solution and computation efficiency.

REFERENCES

- C. Lyra, C. Pissara, C. Cavellucci, A. Mendes, P. M. Franca (2005), "Capacitor placement in large sized radial distribution networks, replacement and sizing of capacitor banks in distorted distribution networks by genetic algorithms", *IEE Proceedings Generation, Transmision & Distribution*, pp. 498-516.
- 2. Ng H.N., Salama M.M.A. and Chikhani A.Y (2000), "Capacitor allocation by approximate reasoning: fuzzy capacitor placement", *IEEE Transactions on Power Delivery*, vol. 15, No. 1, pp. 393-398.
- 3. Sundharajan and A. Pahwa (1994), "Optimal selection of capacitors for radial distribution systems using genetic algorithm", *IEEE Trans. Power Systems*, vol. 9, No.3, pp.1499-1507.
- 4. Ji-Pyng Chiou et al (2006), "Capacitor placement in large scale distribution system using variable scaling hybrid differential evolution", *Electric Power and Energy Systems*, vol. 28, pp.739-745.
- 5. M. Mozaffari Legha, (2011) Determination of exhaustion and junction of in distribution network and its loss maximum, due to geographical condition, MS.c Thesis. Islamic Azad University, Saveh Branch, Markazi Province, Iran.
- 6. J. L. Bala, P. A. Kuntz, M. Tayor (1995), "Sensitivity-based optimal capacitor placement on a radial distribution feeder", Proc. Northcon 95, *IEEE Technical Application Conf.*, pp. 225230.
- 7. D. Karaboga, B. Basturk (2007), "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm", *Journal of Global Optimization*, vol. 39, pp. 459-471.
- D. Karaboga, B. Basturk (2008), "On the performance of artificial bee colony (ABC) algorithm", *Applied Soft Computing*, vol. 8 pp. 687-697.
- 9. Prakash K. and Sydulu M (2007), "Particle swarm optimization based capacitor placement on radial distribution systems", *IEEE Power Engineering Society general meeting 2007*, pp. 1-5.
- D. Das (2002), "Reactive power compensation for radial distribution networks using genetic algorithms", *Electric Power and Energy Systems*, vol. 24, pp.573-581.
- K. S. Swarup (2005), "Genetic Algorithm for optimal capacitor allocation in radial distribution systems", Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, pp152-159.
- 12. D. Karaboga, B. Basturk (2008), "On the performance of artificial bee colony (ABC) algorithm", *Applied Soft Computing*, vol. 8 pp. 687-697.
- Chiradeja, Ramkumar, "An Approach to quantify the Benefits of Distrributed Generation Systems", IEEE trans. On Energy Conversion, Vol. 19, Dec 2004, pp 764 – 773.

- B. Basturk, D. Karaboga (2006), "An artificial bee colony (ABC) algorithm for numeric function optimization", IEEE Swarm Intelligence Symposium 2006, May 12-14, Indianapolis, IN, USA.
- M. Mozaffari Legha; "Optimal Conductor Selection of Radial Distribution Networks Using GA Method" CIRED Regional – Iran, Tehran, 13-14 Jan 2013; Paper No: 12-F-500-0320.
- M. Sharafi, H. Samet, Abdollah Kavousifard, Mahdi Sharafi, Mohammad Reza Rahmati; "Optimal Conductor Selection of Radial Distribution Networks Using PSO Method" CIRED Regional – Iran, Tehran, 13-14 Jan 2013; Paper No: 12-E-500-0317.
- 17. M. Mozaffari Legha, (2011) Determination of exhaustion and junction of in distribution network and its loss maximum, due to geographical condition, MS.c Thesis. Islamic Azad University, Saveh Branch, Markazi Province, Iran.

AUTHOR'S DETAILS

Moein Khosravi was born in kerman, iran. He is Msc student of Department of power engineering, science and Research Branch, Islamic Azad university, sirjan, iran. He is interested in the stability of power system and power distribution system. He has presented more than 3 journal papers and holds 2 patents.

Milad Askari Hashem Abadi was born in Rafsanjan, Iran. He received his B.Sc & M.Sc., from Islamic Azad University Yazd Branch & Islamic Azad University of science and Research Kerman branch, Iran. He is interested in the stability of power systems and power quality in distribution systems. He has presented more than 10 journal papers and 27 conference papers.

Vajihe Sharifi Davarani was born in Rafsanjan. She is Trainer of Department mathematics, Rafsanjan Branch, Islamic Azad University, Iran. She received the M.Sc. from Vali-e-Asr University

Mahdi Mozaffari Legha PhD student of Power Engineering from Shiraz University, Shiraz, IRAN. He works in department of Power Engineering, Javid University Jiroft, Iran; and Electrical Institute, martyr chamran Colleges of kerman, Technical and Vocational University, Kerman Iran. His researches focus on forecasting methods in deregulated electricity markets, and artificial intelligent algorithms, stability of distribution systems and planning and application of fuzzy logic to power system. He has presented more than 25 journal papers and 65 conference papers.